ST. XAVIER'S SENIOR SECONDARY SCHOOL, DELHI - 110054

Class - 11

Mock Test – 2 Half Yearly Examination in **MATHEMATICS**

Time : 3hrs. M. Marks : 100

GENERAL INSTRUCTIONS :-

- 1. All questions are compulsory.
- 2. SECTION A comprises of 6 questions of one marks each.
- 3. SECTION B comprises of 13 questions of four marks each.
- 4. SECTION C comprises of 7 questions of six marks each.

<u>SECTION – A</u>

- **Q. 1.** Find the general solution of the equation $\cos 4x = \cos 2x$
- **Q. 2.** If the arcs of the same lengths in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.

<u>SECTION/-//B</u>

- **Q. 3.** If $sin x = -\frac{3}{5}$, $cos y = -\frac{12}{13}$, x and y both lies in 2^{nd} quadrant find the value of sin (x + y)
- **Q. 4.** Find the complex number 'z' so that |z| + 2i = 2z
- **Q. 5.** Evaluate : $(\sqrt{2} + 1) + 1 + (\sqrt{2} 1) + \sqrt{2}$
- **Q. 6.** Find the value of 'r' if P(n, r) = C(n, r)
- **Q. 7.** Prove that : $\sqrt{2 + \sqrt{2 + \sqrt{2 + 2\cos 16\theta}}} = 2\cos \theta$

Q. 8. Prove that : $3(\sin x - \cos x)^4 + 4(\sin^6 x + \cos^6 x) + 6(\sin x + \cos x)^2 = 13$

Q. 9. Solve the inequation: $\frac{x-1}{2x+1}$, $\frac{x-3}{2x-3}$; $x \in \mathbb{R}$

- **Q. 10.** Using Principle of Mathematical Induction prove that, for all $n \ge 1$, $1^3 + 3^3 + 5^3 + - - - + (2n - 1)^3 = n^2(2n^2 - 1)$
- **Q.** 11. If ' α ' and ' β ' are two different complex numbers with $|\beta| = 1$, then find $\left|\frac{\beta \alpha}{1 \overline{\alpha} \beta}\right|$
- **Q. 12.** Find the real numbers x & y if (x iy)(3 + 5i) is the conjugate of -6 24i.
- **Q. 13.** Evaluate : $\sqrt{8 15i}$
- **Q. 14.** How many natural number not exceeding 4321 can be formed with the digits 1, 2, 3, and 4, if the digits can repeat?
- Q. 15. What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these (*i*) four cards are of the same suit, (*ii*) four cards belong to four different suits.
- Q. 16. Find the number of words with or without meaning which can be made using all the letters of the word *DELHI*. If these words are written as in a dictionary, what will be the 100th word?

P.T.O

- **Q. 17.** The sum of two numbers is 6 times their geometric means, show that numbers are in the ratio $3 + 2\sqrt{2} : 3 2\sqrt{2}$
- **Q. 18.** Find four numbers forming a geometric progression in which the third term is greater than the first term by 9, and the second term is greater than the 4th by 18.

Q. 19. Sum the series to infinity $x(x + y) + x^2(x^2 + y^2) + x^3(x^3 + y^3) + \dots + \infty$, with |x| < 1 and |y| < 1

SECTION - C Q. 20. Solve for $x : tan \left(x + \frac{\pi}{12}\right) = 3 tan \left(x - \frac{\pi}{12}\right)$ Q. 21. Prove that $\cot x - tan x = 2 \cot 2x$. Hence prove that, $tan x + 2 tan 2x + 4 tan 4x + 8 \cot 8x = \cot x$. Q. 22. Show that (i) $tan 4x = \frac{4 tan x (1 - tan^2 x)}{1 - 6 tan^2 x + tan^4 x}$ (ii) $\cot x \cdot \cot 2x - \cot 2x$. $\cot 3x - \cot 3x \cdot \cot x = 1$ Q. 23. Using Principle of Mathematical Induction prove that : for all $n \ge 1, 1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + - - + n terms = \frac{n (n + 1)^2 (n + 2)}{12}$ Q. 24. If S_1, S_2, S_3 are the sum of first *n* natural numbers, their squares and their cubes, respectively, then show that, $9S_2^2 = S_3(1 + 8S_1)$ Q. 25. Find the sum of the first *n* terms of the series: 3 + 7 + 13 + 21 + 31 + - -.

Q. 26. Solve the system of inequalities graphically : $2x + 3y \ge 6, x - 2y \le 2, 3x + 2y < 12, 2y - 3x \le 3, x \ge 0, y \ge 0$ ******