$\frac{PUSH - UP}{TEST - 4}$

Mathematics – XII

(1) Solve the equation :
$$(\tan^{-1}y - x) dy = (1 + y^2) dx$$

- (2) Solve the equation : { $x \cos(y/x) + y \sin(y/x)$ } $y dx = { <math>y \sin(y/x) x \cos(y/x)$ } x dy
- (3) Show that the general solution of the differential equation $(x^2 + x + 1) dy + (y^2 + y + 1) dx = 0$ is

given by (x + y + 1) = A(1 - x - y - 2xy)

(4) Three vectors \vec{a} , \vec{b} , \vec{c} satisfy the condition \vec{a} + \vec{b} + \vec{c} = $\vec{0}$. Evaluate the quantity

$$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$$
, if $|\vec{a}| = 1$, $|\vec{b}| = 4$, $|\vec{c}| = 2$.

- (5) If a unit vector \vec{a} makes angles $\pi/3$ with $i, \pi/4$ with j and an acute angle θ with k, then find θ and hence the vector \vec{a} .
- (6) If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitude, find the angles made by the vector $\vec{a} + \vec{b} + \vec{c}$ with \vec{a} , \vec{b} , \vec{c} respectively. Hence show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .
- (7) Let $\vec{a} = i + 4j + 2k$, $\vec{b} = 3i 2j + 7k$, $\vec{c} = 2i j + 4k$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , $\cancel{c} \vec{c} \cdot \vec{d} = 15$.
- (8) Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b} & \vec{a} \vec{b}$, where $\vec{a} = i + j + k$, $\vec{b} = i + 2j + 3k$.
- (9) Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and each one of them being perpendicular to the sum of the two, find $|\vec{a} + \vec{b} + \vec{c}|$.
- (10) If with reference to the right handed system of mutually perpendicular unit vectors \mathbf{i} , \mathbf{j} , \mathbf{k} ;

 $\vec{a} = 3i - j$, $\vec{b} = 2i + j - 3k$, then express \vec{b} in the form $\vec{b} = \vec{b}_1 + \vec{b}_2$, where \vec{b}_1 is parallel to \vec{a} and

 $\vec{\mathbf{b}}_2$ is perpendicular to $\vec{\mathbf{a}}$

- (11) If \vec{a} , \vec{b} and \vec{c} are three vectors, such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, and $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then prove that angle between \vec{a} and \vec{b} is 60°.
- (12) Find the value of 'p' so that the lines: $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$; $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$,
- (13) If α , β , γ and δ are the angles made by any line with the four diagonals of any cube, then prove that : $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = 4/3$

Page 1 of 2

<u>6 – Marks</u>

(14) Solve the initial value problem : $(1 + e^{2^{X}})dy + (1 + y^{2})e^{X}dx = 0$; y(0) = 1

- (15) Solve the initial value problem : $\mathbf{y}^{1} + \mathbf{y} \cot \mathbf{x} = 2\mathbf{x} + \mathbf{x}^{2} \cot \mathbf{x}$; $\mathbf{y}(\pi/2) = \mathbf{0}$
- (16) Solve the initial value problem : $(x^3 + x^2 + x + 1)dy = (2x^2 + x) dx$; y(0) = 1.
- (17) A variable plane which always remains at a constant distance 'p' from origin, cuts the coordinate axes at **A**, **B**, **C** respectively. Prove that the locus of the centroid of the triangle ABC is $\mathbf{x}^{-2} + \mathbf{y}^{-2} + \mathbf{z}^{-2} = 9\mathbf{p}^{-2}$.
- (18) Find the equation of the plane passing through the line of intersection of the planes
 - $\vec{\mathbf{r}}$. $(\mathbf{i} + \mathbf{j} + \mathbf{k}) = 1$, $\vec{\mathbf{r}}$. $(2\mathbf{i} + 3\mathbf{j} \mathbf{k}) + 4 = 0$, and parallel to the $\mathbf{x} \mathbf{axis}$.
- (19) Find the equation of the plane passing through the line of intersection of the planes
 - $\vec{\mathbf{r}}$. $(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 4$, and $\vec{\mathbf{r}}$. $(2\mathbf{i} + \mathbf{j} \mathbf{k}) + 5 = 0$, and which is perpendicular to the plane $\vec{\mathbf{r}}$. $(5\mathbf{i} + 3\mathbf{j} 6\mathbf{k}) + 8 = 0$.

(20) Find the shortest distance between the lines : $\underline{\mathbf{x}+1} = \underline{\mathbf{y}+1} = \underline{\mathbf{z}+1}$ and $\underline{\mathbf{x}-3} = \underline{\mathbf{y}-5} = \underline{\mathbf{z}-7}$

(21) Find the distance between the lines : $\vec{r} = i + 2j - 4k + \lambda(2i + 3j + 6k)$; $\vec{r} = 3i + 3j - 5k + \mu(2i + 3j + 6k)$.
